Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aquabromidobis(dimethylglyoximato)cobalt(III)

Parthasarathy Meera, Madhavan Amutha Selvi, Pachaimuthu Jothi and Arunachalam Dayalan*

Loyola College (Autonomous), Chennai 600 034, Tamil Nadu, India
Correspondence e-mail: dayalan77@gmail.com
Received 17 February 2011; accepted 8 March 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.034 ; w R$ factor $=0.096$; data-to-parameter ratio $=14.7$.

In the title complex, $\left[\mathrm{CoBr}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, a crystallographic mirror plane bisects the molecule, perpendicular to the glyoximate ligands. The geometry around the cobalt(III) atom is approximately octahedral with the four glyoximate N atoms forming the square base. A bromide ion and the O atom of a water molecule occupy the remaining coordination sites. The $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ bite angles are 82.18 (4) and $80.03(16)^{\circ}$. The glyoximate moieties form strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The coordinated water molecule forms an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with a glyoximate O atom, thereby generating supramolecular chains parallel to [010].

Related literature

For related complexes, see: Ohkubo \& Fukuzumi (2005); Randall \& Alberty (1970); Schrauzer (1968); Trommel et al. (2001). For similar structures, see: Bernstein et al. (1995); Mégnamisi-Bélombé et al. (1983); Meera et al. (2009); Ramesh et al. (2008). For the preparation of similar complexes, see: Vijayraghavan \& Dayalan (1992). For spectroscopic studies related to the title complex, see: Folgando et al. (1986); Khan et al. (1997); Lopez et al. (1986).

Experimental

Crystal data
$\left[\mathrm{CoBr}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=387.09$
Monoclinic, $P 2_{1} / m$
$a=7.5903$ (3) A
$b=8.8816$ (4) \AA
$c=10.5343$ (5) \AA
$\beta=96.137$ (3) ${ }^{\circ}$

$$
V=706.09(5) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=4.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker 1999)
$T_{\text {min }}=0.581, T_{\text {max }}=0.687$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.096$
$S=1.22$
1480 reflections
101 parameters
2 restraints

7395 measured reflections 1480 independent reflections 1298 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(1)$	$1.58(1)$	$2.494(3)$	$169(4)$
O3-H3 $\cdots 1^{\mathrm{ii}}$	$0.85(3)$	$1.79(3)$	$2.616(3)$	$167(4)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z$; (ii) $-x+1, y-\frac{1}{2},-z+1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

The authors are thankful to Rev. Fr B. Jeyaraj, SJ, Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities, the Head, SAIF, CDRI, Lucknow, India, for supplying the elemental data and the SAIF, IIT Madras, Chennai, India, for recording the ${ }^{1} \mathrm{HNMR}$ spectra and for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2399).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Folgando, J. V., Coronado, E. \& Bltran, D. (1986). J. Chem. Soc. Dalton Trans. 1, pp. 1061-1064.

metal-organic compounds

Khan, T. A., Shahjahan, \& Zaidi, S. A. A. (1997). Indian J. Chem. Sect. A, 36, 153-156
Lopez, C., Alvarez, S., Solans, X. \& Font-Altaba, M. (1986). Inorg. Chem. 25, 2962-2969.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Meera, P., Revathi, C. \& Dayalan, A. (2009). Acta Cryst. E65, m140-m141.
Mégnamisi-Bélombé, M., Endres, H. \& Rossato, E. (1983). Acta Cryst. C39, 705-707.

Ohkubo, K. \& Fukuzumi, S. (2005). J. Phys. Chem. 109, 1105-1113.
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. \& Dayalan, A. (2008). Acta Cryst. E64, m300-m301.
Randall, W. C. \& Alberty, R. A. (1970). Biochemistry, 9, 1886-1892
Schrauzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Trommel, J. S., Warncke, K. \& Marzilli, L. G. (2001). J. Am. Chem. Soc. 123, 3358-3366.
Vijayraghavan, V. R. \& Dayalan, A. (1992). J. Indian Chem. Soc. 69, 383-384.

supplementary materials

Acta Cryst. (2011). E67, m442-m443 [doi:10.1107/S1600536811008877]

Aquabromidobis(dimethylglyoximato)cobalt(III)

P. Meera, M. Amutha Selvi, P. Jothi and A. Dayalan

Comment

A number of cobalt complexes have been proposed as model systems for vitamin- B_{12} (Trommel et al., 2001; Ohkubo \& Fukuzumi, 2005). The most commonly mentioned model system is bis(dimethylglyoximato)cobalt(III) complexes on which Schrauzer has carried out a great amount of research. The common feature of the different models is that each possesses a strong equatorial ligand field (Schrauzer,1968). A variety of cobalt(III) complexes have been discovered possessing stable axial cobalt-carbon bonds. Simple alkyl cobaloximes, are thermally stable upto about $200^{\circ} \mathrm{C}$ and are therefore among the most stable organo metallic compounds known. Halide ions can coordinate to cobalt(III) as other common anionic ligands. Cobalt(III) complexes, being low spin, are conveniently studied in aqueous medium (Randall \& Alberty, 1970). We report here the synthesis and X-ray crystal structure of the title compound.

The geometry around the cobalt(III) is approximately octahedral with the four glyoximate N atoms forming the square base; whereas, the coordinated bromide $(\mathrm{Br} 1)$ and oxygen $(\mathrm{O} 3)$ and the coordinated oxygen of water form the apex. The bite angles of the glyoximates with cobalt are $\mathrm{N}(1) \# 1-\mathrm{Co}(1)-\mathrm{N}(1) 82.18(14)^{\circ}$ and $\mathrm{N}(2) \# 1-\mathrm{Co}(1)-\mathrm{N}(2) 80.03(03)^{\circ}$, respectively. Further $\mathrm{N}(1) \# 1-\mathrm{Co}(1)-\mathrm{N}(2) \# 1178.29(10)^{\circ}$ confirms the distorted octahedral geometry of the molecule. The bond lengths $\mathrm{Co}(1)-\mathrm{N}(1) \# 1,1.883(2) \AA, \mathrm{Co}(1)-\mathrm{N}(2) \# 1,1.911$ (2) \AA agree well with the previously reported structures (Meera et al., 2009, Ramesh et al., 2008) and the axial $\mathrm{Co}-\mathrm{Br}$ distance $\mathrm{d}(\mathrm{Co1}-\mathrm{Br} 1)=2.3563$ (6) \AA agrees well with the reported structure of trans-aquabromobis[ethanedial dioximato(1-)-N, N^{\prime}]cobalt(III)(Mégnamisi-Bélombé et al., 1983). The glyoximate moieties are further bound by strong intraomecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds showing an $S(6)$ ring motif (Bernstein et al., 1995). Thecoordinated water forms an intermolecular hydrogen bond $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{ii}}$ [symmetry code (ii): $-x+1, y$ $-1 / 2,-z+1$] with the glyoximate oxygen atoms which links the inversion related title compound thus forming a ring motif of $\mathbf{R}_{2}{ }^{2}(10)$. Fused rings of $\mathbf{R}_{2}{ }^{2}(10)$ generates a supramolecular one dimensional chain extending parallel to [010] direction. The structure is further stabilized through van der waals interaction.

Experimental

Cobalt(II) bromide hexahydrate was thoroughly grinded and exposed to microwave for 30 s.The dehydrated cobalt(II) bromide was mixed with dimethylglyoxime in 1:2 molar ratio in acetone medium and allowed to stir for an hour (Vijayraghavan \& Dayalan, 1992). The dibromo complex obtained was filtered dried and then it was refluxed with water for two hours. The resulting brown mass was filtered washed with ether and dried over desiccator. The elemental analysis data, obtained by analytical methods agree well with the theoretical data expected for the formula of the complex, $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{BrCo}$ proposed viz., $\left[\mathrm{Co}(\mathrm{dmgH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}\right]$: Anal,\% (cald,\%): $\mathrm{C}, 25.12(24.8) ; \mathrm{H}, 4.82(4.13) ; \mathrm{N}, 14.50(14.47)$. The $\mathrm{C}=\mathrm{N}$ stretching vibration of oxime in its complex was observed at $1580 \mathrm{~cm}^{-1}$ and the intra molecular hydrogen bonded OH around $3100 \mathrm{~cm}^{-1}$. A moderate peak around $1070 \mathrm{~cm}^{-1}$ may be assigned to the $\mathrm{C}=\mathrm{N}-\mathrm{O}$ stretching of the oxime. The peak around $510 \mathrm{~cm}^{-1}$ could be attributed to cobalt(III)-nitrogen stretching (Khan et al., 1997; Folgando et al., 1986). The ${ }^{1}$ H NMR spectra of the

supplementary materials

complex in DMSO- d_{6} shows a sharp intense singlet at 2.3 p.p.m. corresponding to methyl protons of the oxime. The oxime -OH resonates at 13.08 p.p.m..A singlet around 8.5 ppm represents the -OH of the aquo ligand (Lopez et al., 1986).

Refinement

The $\mathrm{H}-$ atoms bound to $\mathrm{C}-$ atoms were constrained to riding atoms with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {equ }}(\mathrm{C})$. The positions of the hydrogen atoms, bound to the glyoximate and water O atoms, were identified from difference in the electron density map and restrained to a distance of $\mathrm{d}(\mathrm{O} 2-\mathrm{H} 2)=0.92(1) \AA$ and $\mathrm{d}(\mathrm{O} 3-\mathrm{H} 3)=0.85(1) \AA$. A difference elctron density peak of $1.008 \mathrm{e}^{-3}$ was observed after the final refinement. Since the observed peak position is meaningless it is ignored.

Figures

Fig. 1. Displacement ellipsoid plot of the title compound drawn at 30% probability level.The equivalent symbol i represents the mirror symmetry $(x, 1 / 2 ;-y, z)$ at one fourth of b axes.

Aquabromidobis(dimethylglyoximato)cobalt(III)

Crystal data

$\left[\mathrm{CoBr}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=387.09$
Monoclinic, $P 2{ }_{1} / m$
Hall symbol: -P 2yb
$a=7.5903$ (3) \AA
$b=8.8816$ (4) \AA
$c=10.5343(5) \AA$
$\beta=96.137$ (3) ${ }^{\circ}$
$V=706.09(5) \AA^{3}$
$Z=2$
$F(000)=388$
$D_{\mathrm{x}}=1.821 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3745 reflections
$\theta=2.7-30.7^{\circ}$
$\mu=4.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, brown
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker 1999)

1480 independent reflections
1298 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-9 \rightarrow 9$
$T_{\text {min }}=0.581, T_{\text {max }}=0.687$
7395 measured reflections

$$
\begin{aligned}
& k=-10 \rightarrow 9 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.096$
$S=1.22$

1480 reflections
101 parameters
2 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C1	$0.7937(4)$	$0.3331(3)$	$0.5395(3)$	$0.0330(6)$
C2	$0.8935(4)$	$0.4238(4)$	$0.6415(3)$	$0.0487(8)$
H2A	0.8818	0.5288	0.6207	0.073^{*}
H2B	1.0164	0.3960	0.6486	0.073^{*}
H2C	0.8469	0.4052	0.7213	0.073^{*}
C3	$0.3600(4)$	$0.1669(4)$	$0.1163(3)$	$0.0448(8)$
C4	$0.2476(6)$	$0.0761(5)$	$0.0221(4)$	$0.0726(13)$
H4A	0.2737	-0.0288	0.0358	0.109^{*}
H4B	0.2709	0.1038	-0.0626	0.109^{*}
H4C	0.1250	0.0942	0.0318	0.109^{*}
N1	$0.6996(3)$	$0.3893(2)$	$0.4417(2)$	$0.0302(5)$
N2	$0.4668(3)$	$0.1117(3)$	$0.2069(2)$	$0.0374(6)$
O1	$0.6810(3)$	$0.5377(2)$	$0.4230(2)$	$0.0395(5)$
O2	$0.4819(3)$	$-0.0402(3)$	$0.2186(2)$	$0.0501(6)$
O3	$0.3771(4)$	0.2500	$0.4145(3)$	$0.0314(6)$

Co1	$0.58731(6)$	0.2500	$0.32505(5)$	$0.02601(18)$
Br1	$0.83644(6)$	0.2500	$0.20942(4)$	$0.04048(18)$
H2	$0.557(4)$	$-0.051(4)$	$0.293(2)$	$0.059(12)^{*}$
H3	$0.366(5)$	$0.173(3)$	$0.460(3)$	$0.050(10)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0234(13)$	$0.0376(16)$	$0.0391(15)$	$-0.0028(12)$	$0.0091(11)$	$-0.0058(12)$
C 2	$0.0354(17)$	$0.060(2)$	$0.0503(18)$	$-0.0080(15)$	$0.0039(14)$	$-0.0164(17)$
C 3	$0.0321(15)$	$0.068(2)$	$0.0356(16)$	$-0.0038(15)$	$0.0097(13)$	$-0.0091(15)$
C 4	$0.054(2)$	$0.106(4)$	$0.056(2)$	$-0.018(2)$	$0.0022(19)$	$-0.030(2)$
N 1	$0.0284(12)$	$0.0230(12)$	$0.0415(13)$	$-0.0032(9)$	$0.0139(10)$	$-0.0029(10)$
N 2	$0.0327(13)$	$0.0388(15)$	$0.0430(14)$	$-0.0053(11)$	$0.0140(11)$	$-0.0082(11)$
O1	$0.0446(12)$	$0.0229(10)$	$0.0538(13)$	$-0.0022(9)$	$0.0180(10)$	$-0.0031(9)$
O2	$0.0540(15)$	$0.0376(13)$	$0.0604(15)$	$-0.0075(11)$	$0.0142(12)$	$-0.0163(11)$
O3	$0.0300(14)$	$0.0259(15)$	$0.0401(16)$	0.000	$0.0130(12)$	0.000
Co1	$0.0251(3)$	$0.0227(3)$	$0.0312(3)$	0.000	$0.0076(2)$	0.000
Br1	$0.0364(3)$	$0.0432(3)$	$0.0441(3)$	0.000	$0.01498(19)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.289(4)$
$\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	$1.476(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.485(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{N} 2$	$1.283(4)$
$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.475(7)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.477(4)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$112.79(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.4(3)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 2$	$122.85(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 3{ }^{\mathrm{i}}$	$112.51(19)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$124.4(4)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4$	$123.1(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5

C4-H4C	0.9600
N1-O1	1.338 (3)
N1-Co1	1.883 (2)
N2-O2	1.358 (3)
N2-Co1	1.911 (2)
$\mathrm{O} 2-\mathrm{H} 2$	0.921 (10)
O3-Co1	1.938 (3)
O3-H3	0.85 (3)
Col-N1 ${ }^{\text {i }}$	1.883 (2)
$\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {i }}$	1.911 (2)
Col-Br1	2.3563 (6)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 2$	119.2 (3)
C3-N2-Col	117.3 (2)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co} 1$	123.3 (2)
N2-O2-H2	103 (2)
Co1-O3-H3	114 (3)
$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	82.18 (14)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {i }}$	98.88 (11)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 2{ }^{\text {i }}$	178.29 (10)
N1-Col-N2	178.29 (10)
$\mathrm{N} 1{ }^{\text {i }}$-Col-N2	98.88 (11)
$\mathrm{N} 2{ }^{\mathrm{i}}$-Col-N2	80.03 (16)
N1-Col-O3	91.24 (9)
$\mathrm{N} 1^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 3$	91.24 (9)

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	$122.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$	$116.1(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Co} 1$	$121.18(18)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	$179.81(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{O} 1$	$-0.7(4)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co1}$	$0.02(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1$	$179.5(2)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 2$	$-179.62(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 2$	$0.8(5)$
$\mathrm{C} 3{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co1}$	$3.8(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1$	$-175.8(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$0.0(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$-179.82(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$178.6(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$-1.2(2)$
S 4	

$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 3$	$87.40(10)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 3$	$87.40(10)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Br} 1$	$90.29(7)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Br} 1$	$90.29(7)$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{Br} 1$	$91.04(7)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{Br} 1$	$91.04(7)$
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{Br} 1$	$177.97(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 3$	$91.1(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 3$	$-88.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Br} 1$	$-90.28(19)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{Co} 1-\mathrm{Br} 1$	$89.92(19)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$174.1(2)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$-2.4(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$-4.6(3)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$178.98(17)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 3$	$83.2(2)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 3$	$-93.2(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{Br} 1$	$-95.5(2)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{Co} 1-\mathrm{Br} 1$	$88.1(2)$

Symmetry codes: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O1}^{\mathrm{i}}$	$0.92(1)$	$1.58(1)$	$2.494(3)$	$169(4)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots 1^{\mathrm{ii}}$	$0.85(3)$	$1.79(3)$	$2.616(3)$	$167(4)$

Symmetry codes: (i) $x,-y+1 / 2, z$; (ii) $-x+1, y-1 / 2,-z+1$.
supplementary materials

Fig. 1

Fig. 2

